46 CFR Ch. I (10-1-06 Edition)

SEMI-MEMBRANE TANKS

§154.435 General.

- (a) The design of a semi-membrane tank, the supporting insulation for the tank, and the supporting hull structure for the tank must be specially approved by the Commandant (G-MSO).
- (b) A semi-membrane tank must be designed to meet:
 - (1) § 154.425 through § 154.432;
 - (2) §154.437 through §154.440; or
 - (3) § 154.444 through § 154.449.

[CGD 74-289, 44 FR 26009, May 3, 1979, as amended by CGD 82-063b, 48 FR 4782, Feb. 3, 1983]

§154.436 Design vapor pressure.

The P_o of a semi-membrane tank must not exceed 24.5 kPa gauge (3.55 psig) unless special approval by the Commandant (G-MSO) allows a P_o between 24.5 kPa gauge (3.55 psig) and 69 kPa gauge (10 psig).

[CGD 74-289, 44 FR 26009, May 3, 1979, as amended by CGD 82-063b, 48 FR 4782, Feb. 3, 1983]

INDEPENDENT TANK TYPE A

§154.437 General.

An independent tank type A must meet §154.438 through §154.440.

§154.438 Design vapor pressure.

- (a) If the surface of an independent tank type A are mostly flat surfaces, the $P_{\rm o}$ must not exceed 69 kPa gauge (10 psig).
- (b) If the surfaces of an independent tank type A are formed by bodies of revolution, the design calculation of the $P_{\rm o}$ must be specially approved by the Commandant (G-MSO).

[CGD 74-289, 44 FR 26009, May 3, 1979, as amended by CGD 82-063b, 48 FR 4782, Feb. 3, 1983]

§154.439 Tank design.

An independent tank type A must meet the deep tank standard of the American Bureau of Shipping published in "Rules for Building and Classing Steel Vessels", 1981, and must:

(a) Withstand the internal pressure determined under §154.407;

- (b) Withstand loads from tank supports calculated under §§154.470 and 154.471; and
- (c) Have a corrosion allowance that meets § 154.412.

[CGD 74–289, 44 FR 26009, May 3, 1979, as amended by CGD 77–069, 52 FR 31630, Aug. 21, 1987]

§ 154.440 Allowable stress.

- (a) The allowable stresses for an independent tank type A must:
- (1) For tank web frames, stringers, or girders of carbon manganese steel or aluminum alloys, meet $\sigma_B/2.66$ or $\sigma_Y/1.33$, whichever is less; and
- (2) For other materials, be specially approved by the Commandant (G-MSO).
- (b) A greater allowable stress than required in paragraph (a)(1) of this section may be specially approved by the Commandant (G-MSO) if the equivalent stress (σ_c) is calculated from the formula in Appendix A of this part.
- (c) Tank plating must meet the American Bureau of Shipping's deep tank standards, for an internal pressure head that meets §154.439(a), published in "Rules for Building and Classing Steel Vessels", 1981.

[CGD 74–289, 44 FR 26009, May 3, 1979, as amended by CGD 82–063b, 48 FR 4782, Feb. 3, 1983; CGD 77–069, 52 FR 31630, Aug. 21, 1987]

INDEPENDENT TANK TYPE B

§154.444 General.

An independent tank type B must be designed to meet §§154.445 through 154.449.

§ 154.445 Design vapor pressure.

If the surfaces of an independent tank type B are mostly flat surfaces, the P_0 must not exceed 69 kPa gauge (10 psig).

$\S 154.446$ Tank design.

An independent tank type B must meet the calculations under §154.448.

§ 154.447 Allowable stress.

(a) An independent tank type B designed from bodies of revolution must have allowable stresses ³ determined by the following formulae:

 $^{{}^3\}mathrm{See}$ Appendix B for stress analyses definitions.

 $\sigma_m \!\! \leq f$

 $\sigma_L \le 1.5 f$

 $\sigma_b \le 1.5 F$

 $\sigma_L + \sigma_b \le 1.5 \text{ F}$

 $\sigma_{\rm m} + \sigma_{\rm b} \le 1.5 \text{ F}$

where:

 $\sigma_m {=} equivalent$ primary general membrane stress 4

 $\begin{array}{cccc} \sigma_L {=} \mathrm{equivalent} & \mathrm{primary} & \mathrm{local} & \mathrm{membrane} \\ & \mathrm{stress}\,^4 \end{array}$

 $\sigma_b {=} \text{equivalent primary bending stress}\,^4$

f=the lesser of $(\sigma_{\!\scriptscriptstyle B}/A)$ or $(\sigma_{\!\scriptscriptstyle Y}/B)$

F=the lesser of (σ_B/C) or (σ_Y/D)

A, B, C, and D=stress factors in Table 2.

TABLE 2—VALUES FOR STRESS FACTORS

	Nickel steel and carbon manganese steel values	Austenitic steel values	Aluminum alloy values
Stress factors:			
Α	4.0	4.0	4.0
В	2.0	1.6	1.5
C	3.0	3.0	3.0
D	1.5	1.5	1.5

(b) An independent tank type B designed from plane surfaces must have allowable stresses specially approved by the Commandant (G-MSO).

[CGD 74-289, 44 FR 26009, May 3, 1979, as amended by CGD 82-063b, 48 FR 4782, Feb. 3, 1983]

§154.448 Calculations.

The following calculations for an independent tank type B must be specially approved by the Commandant (G-MSO):

- (a) Plastic deformation, fatigue life, buckling, and crack propagation resulting from static and dynamic loads on the tank and its support.
- (b) A three-dimensional analysis of the stress exerted by the hull on the tank, its support, and its keys.
- (c) The response of the tank and its support to the vessel's motion and acceleration in irregular waves or calculations from a similar vessel.
- (d) A tank buckling analysis considering the maximum construction tolerance.
- (e) A finite element analysis using the loads determined under §154.406.

- (f) A fracture mechanics analysis using the loads determined under §154.406.
- (g) The cumulative effects of the fatigue load from the following formula:

$$\sum \frac{n_1}{N_1} + \frac{10^3}{N_i} \le C_w$$

where:

 n_i =the number of stress cycles at each stress level during the life of the vessel;

N_i=the number of cycles to failure for corresponding stress levels from the Wohler (S-N) curve;

 N_j =the number of cycles to failure from the fatigue load by loading and unloading the tank; and

 $C_{\rm w}$ =0.5 or less. A $C_{\rm w}$ of greater than 0.5 but not exceeding 1.0 may be specially approved by the Commandant (G-MTH).

[CGD 74-289, 44 FR 26009, May 3, 1979, as amended by CGD 82-063b, 48 FR 4782, Feb. 3, 1983]

§154.449 Model test.

The following analyzed data of a model test of structural elements for independent tank type B must be submitted to the Commandant (G-MSO) for special approval:

- (a) Stress concentration factors.
- (b) Fatigue life.

[CGD 74-289, 44 FR 26009, May 3, 1979, as amended by CGD 82-063b, 48 FR 4782, Feb. 3, 1983]

INDEPENDENT TANK TYPE C AND PROCESS PRESSURE VESSELS

§ 154.450 General.

Independent tanks type C and process pressure vessels must be designed to meet the requirements under Part 54 of this chapter, except §54.01–40(b), and:

- (a) The calculation under §54.01–18 (b)(1) must also include the design loads determined under §154.406;
- (b) The calculated tank plating thickness, including any corrosion allowance, must be the minimum thickness without a negative plate tolerance; and
- (c) The minimum tank plating thickness must not be less than:
- (1) 5mm (3/16 in.) for carbon-manganese steel and nickel steel;
- (2) 3mm ($\frac{1}{8}$ in.) for austenitic steels; or
- (3) 7mm (%2 in.) for aluminum alloys.

⁴See Appendix A for equivalent stress.